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Abstract. We explore analytically the nature of the transition to the Fulde-Ferrel-Larkin-Ovchinnikov
superfluid phases in the vicinity of the tricritical point, where these phases begin to appear. We make use
of an expansion of the free energy up to an overall sixth order, both in order parameter amplitude and
in wavevector. We first explore the minimization of this free energy within a subspace, made of arbitrary
superpositions of plane waves with wavevectors of different orientations but same modulus. We show that
the standard second order FFLO phase transition is unstable and that a first order transition occurs at
higher temperature. Within this subspace we prove that it is favorable to have a real order parameter and
that, among these states, those with the smallest number of plane waves are preferred. This leads to an
order parameter with a cos(q0 ·r) dependence, in agreement with preceding work. Finally we show that the
order parameter at the transition is only very slightly modified by higher harmonics contributions when
the constraint of working within the above subspace is released.

PACS. 74.20.Fg BCS theory and its development – 74.60.Ec Mixed state, critical fields, and surface sheath

1 Introduction

Although they have been proposed a long time ago, Fulde-
Ferrel-Larkin-Ovchinnikov (FFLO) phases [1,2] are still
the subject of a continuing interest. Indeed the existence
of these phases is a fairly remarkable phenomenon since
they correspond to a spontaneous symmetry breaking of
the standard BCS superfluid phase in the presence of an
effective field, inducing a difference in chemical potential
between the two populations involved in the formation of
Cooper pairs. This symmetry breaking leads to an inho-
mogeneous superfluid with a space dependent order pa-
rameter, while the applied field is perfectly homogeneous.
This situation is analogous to the appearance of vorticity
in type II superconductors, but in this latter case the ef-
fect is due to the coupling of the field to particle currents
while in FFLO phases only the coupling to the spin of
the pairing fermions is involved. In standard supercon-
ductors the coupling to the orbital degrees of freedom
is much stronger than the coupling to the spins. Hence
the upper critical field is due to the orbital coupling and
the FFLO phases can not be observed, since they should
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appear at much higher field. However in heavy fermions
superconductors the strength of these two couplings is
comparable, which could make possible the observation
of FFLO phases. Nevertheless their sensitivity to impuri-
ties could be a major problem. Another possible direction
to eliminate the orbital coupling is to consider lower di-
mensional superconductors, in a geometry where the cur-
rents would have to flow in an actually prohibited direc-
tion. Organic compounds or cuprate superconductors are
interesting systems in this respect. And indeed very re-
cently the FFLO state has been claimed to be observed
in a quasi-two-dimensional organic compound [3]. On the
other hand earlier possible observations in heavy fermion
compounds [4] have not been undisputed. We note in par-
ticular that the analysis of experimental results relies very
often heavily on the theoretical results, but we will see that
the situation is not completely satisfactory in this respect.

Another class of physical systems where FFLO phases
could be observed is coming up quite recently. These are
the ultracold fermionic gases. As it is well known remark-
ably low temperatures have been obtained on bosonic
gases, leading in particular to the observation of Bose-
Einstein condensation in alkali ultracold gases. More
recently fermionic gases have been cooled down in the de-
generate regime [5–7] and reaching a BCS superfluid tran-
sition in these systems seems a reasonable possibility [8,9].
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However in the systems considered for observing this tran-
sition there is, in contrast to electronic spin relaxation in
superconductors, no fast relaxation mechanism to equal-
ize the populations of the two fermion species involved in
the formation of Cooper pairs. Hence one should have no
limitation to the effective field in these systems since the
number of atoms in the populations can be in principle
obtained at will. So the difference in atomic populations
looks as a very promising control parameter. On the other
hand if this parameter is not fully controlled this might
very well be a major difficulty in reaching the BCS tran-
sition in these systems [10,11]. Let us also mention that
FFLO phases are of high interest for quark matter [12]
which is expected to be found in the core of compact stars.

In contrast with this raising experimental interest
there are still theoretical problems with the precise na-
ture of the possible phases. Specifically the basic FFLO
instability corresponds to have pairs formed with a total
nonzero momentum q0 instead of forming pairs (k,−k)
with zero total momentum as in the standard BCS phase.
This gives rise to a spatial dependence exp(iq0 · r) for the
order parameter, which leaves a degeneracy with respect
to the orientation of q0. This has been investigated by [2]
Larkin and Ovchinnikov (LO) who looked how it is lifted
right below the critical field. In this case, when considering
the spatial dependence of the order parameter ∆(r), one
can restrict the investigation to the subspace generated
by linear combination of the plane waves exp(iq0 · r) with
all possible directions q0. At T = 0, LO looked for peri-
odic structures and found that the energetically favored
result is a second order transition to a one-dimensional
‘planar’ texture ∆(r) ∼ cos(q0 · r). However they left
open in their paper the possibility of a first order tran-
sition. Actually when considering the three-dimensional
‘cubic’ texture ∆(r) ∼ cos(q0x)+ cos(q0y)+ cos(q0z) they
found that it is energetically unfavorable compared to the
normal state. Nevertheless they obtained from the gap
equation that a nonzero solution for this order parame-
ter exists above the FFLO transition line. In terms of the
expansion of the free energy in powers of the order pa-
rameter, schematically Ω = α2∆

2 + α4∆
4, this situation

corresponds to a positive coefficient α2 for the second or-
der term and a negative coefficient α4 for the fourth order
one, just the opposite of the standard Landau-Ginzburg
expansion below the transition. The LO evaluation of the
related free energy corresponds actually to the maximum
α2

2/4|α4| of this free energy. Beyond this maximum the
free energy decreases, and it would go to −∞ if one would
consider only the second and fourth order terms. Natu-
rally one has to include the effect of all higher order terms
in order to find the value of the free energy for large values
of the order parameter. However, at the FFLO transition
line and slightly above it, the free energy becomes neg-
ative for values of the order parameter (specifically for
∆2 = α2/|α4|) where only the second and fourth order
terms have to be kept in the expansion. This shows defi-
nitely that the transition toward the FFLO phase occurs
above the standard second order FFLO transition line and
is actually first order, because one can display in this range

a solution which has a lower free energy than the normal
state. On the other hand in order to obtain consistently
the order parameter which gives the lowest free energy one
has naturally to take into account higher order terms. In
particular it is by no means obvious that the cubic phase is
the stable one. Moreover when higher order terms are con-
sidered there are no reason anymore to restrict the search
to the subspace generated by the plane waves exp(iq0 · r).

In order to explore more fully this difficult problem
with easier conditions, it is better to be able to proceed
to some kind of expansion. This can be done if, instead
of working at T = 0, one explores the vicinity of the
tricritical point (TCP), where the FFLO transition line
starts. It is located at Ttcp/Tc0 = 0.561 where Tc0 is the
critical temperature for µ̄ = 0, with 2µ̄ = µ↑ − µ↓ be-
ing half the chemical potential difference between the two
fermionic populations forming pairs. The corresponding
effective field is µ̄tcp/Tc0 = 1.073. At this point, in the
free energy expansion, both the coefficient of the second
order term α2 and the coefficient of the fourth order term
α4 vanish. Naturally α2 is zero just because the TCP is
on the standard second order phase transition line. On the
other hand following this transition line one has α4 > 0 for
T > Ttcp and α4 < 0 for T < Ttcp. In our case the change
of sign of α4 at Ttcp is the origin of the FFLO instability,
because it happens accidentally that this same coefficient
controls also the wavevector dependence of α2 (this is seen
explicitely in Eqs. (7, 8) below). Clearly, by continuity, the
equilibrium order parameter will be small in the vicinity
of the TCP since we know that it is zero just above the
TCP on the second order line and it is small right below
it in the superfluid phase. Therefore a power expansion
of the free energy will be enough to find it. On the other
hand, since the second and fourth order terms are zero at
the TCP, we have clearly to expand at least up to sixth
order, but this will prove to be enough because the cor-
responding coefficient is positive and not small. Similarly
the optimum wavevector q0 corresponding to the FFLO
phase will be small in the vicinity of the TCP since it is
zero just above it on the second order line. This allows to
proceed to a gradient expansion of the free energy. Since
only even powers of the wavevector can enter and we look
for a minimum as a function of this wavevector, we have
to expand at least up to fourth order in gradient, but this
will prove again to be enough.

This line of thought has actually already been followed
by Houzet et al. [13,16], who have performed this expan-
sion for the free energy and explored the result numeri-
cally. They have found that the energetically favored phase
is the one-dimensional planar order parameter found by
LO at T = 0, but that the transition is actually slightly
first order, instead of second order as found by LO at
T = 0. Our purpose in the present paper is rather to pro-
ceed to an analytical study of this problem. Indeed there
are infinitely many possible order parameters in competi-
tion. And our aim, in considering the vicinity of the TCP,
is to find the important ingredients which are responsible
for the selection of the actual stable state and obtain a bet-
ter physical understanding, having in particular in mind
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the generalization to more complicated situations. Hence
our paper is complementary to their work. In particular
we obtain a first order transition to the one-dimensional
planar order parameter, but we will be able to analyze
the reasons which favor this phase. The transition to this
planar order parameter has been actually explored nu-
merically down to T = 0 by Matsuo et al. [14]. They have
used quasiclassical equations and found that the transi-
tion keeps first order down to low temperature, but even-
tually goes to second order in agreement with LO. On
the other hand since we know that at T = 0 the cubic
phase is more stable than the planar one, the question
of the stablest phase at low temperature is still unsolved.
Finally this first order transition to the planar phase in
the three-dimensional case is in contrast with the results
of Burkhardt and Rainer [15] who found it to be second
order in a two-dimensional space.

In the following section, for completeness and to set
up our notations, we rederive the expression [16] of the
free energy. After considering in Section 3 some simple
situations, we explore in details the minimization of this
free energy. This is done in Section 4 by restricting our
search to the LO subspace for the order parameter, which
is made of arbitrary superpositions of plane waves. In Sec-
tion 5 we show that our results are only slightly modified
when we release this restriction. Throughout the paper
we restrict ourselves to the simplest BCS scheme, namely
we will consider the free energy corresponding to a weak
coupling isotropic Fermi system, ignoring in particular
any Fermi liquid effect. Moreover we concentrate on the
three-dimensional case which leads to a first order tran-
sition, and make only occasionally comparison with the
two-dimensional situation where the transition is second
order.

2 The free energy

There are various ways to obtain the explicit expression for
the free energy we need in the vicinity of the TCP [17,18].
In practice it is convenient to use the fact [18] that, by
varying the free energy with respect to ∆(r) one finds the
gap equation, which is also easily obtained from Gorkovs
equations, as done for example by LO [2]. The integral
form of these equations is [17,19], with standard notations:

G↑(r, r′) = G0
↑(r − r′) −

∫
dr1G

0
↑(r − r1)∆(r1)F+(r1, r′)

(1)

F+(r, r′) =
∫

dr1Ḡ0
↓(r − r1)∆∗(r1)G↑(r1, r′) (2)

with, for the Fourier transforms of the free fermions ther-
mal propagators, G0

↑(k) = (iωn − ξk + µ̄)−1 and Ḡ0
↓(k) =

(−iωn−ξk− µ̄)−1 where ξk is the kinetic energy measured
from the Fermi surface for µ̄ = 0 and ωn = πT (2n + 1)
are Matsubara frequencies. The order parameter is given

by the self-consistency relation:

∆∗(r) = V T
∑

n

F+(r, r). (3)

We expand equations (1–2) up to fifth order
in ∆(r). We introduce the Fourier transform
∆q =

∫
dr∆(r) exp(−iq · r) of the order parameter.

As explained in the introduction we proceed also to an
expansion in the wavevector q of the order parameter
since we know that its relevant values will be small in
the vicinity of the TCP. More precisely we will see that,
in order to obtain a coherent expansion, it is enough to
go only up to fifth order terms in overall power of ∆
and q. This means that, in the gap equation, we have to
expand the first order term in ∆ only to fourth order in
q. Similarly the third order term in ∆ has to be expanded
only to second order in q and the fifth order term in ∆
can be calculated to zeroth order in q. For example in
order to find the third order term, we have to expand up
to second order in wavevectors:∑

k

Ḡ0(k)G0(k+q1)Ḡ0(k + q−q3)G0(k+q)∆∗
q1

∆q2∆
∗
q3

(4)

where we have used q1 +q3 = q+q2 and we have omitted
the unnecessary spin index. In the expansion appear the
following numerical coefficients:

a0(µ̄, T ) = 1
N0V − 2πT Re

[∑∞
n=0

1
ω̄n

]

a2(µ̄/T ) = −µ̄22πT Re
[∑∞

n=0
1

ω̄3
n

]
(5)

a4(µ̄/T ) = −µ̄42πT Re
[∑∞

n=0
1

ω̄5
n

]
where ω̄n = ωn − iµ̄, and the summation for a0 has to be
cut-off in the standard BCS way. The simple second order
transition line to a standard BCS superfluid with space
independent order parameter is given by a0(µ̄, T ) = 0.
Below the TCP it corresponds to a spinodal transition
line, at which the normal state becomes absolutely unsta-
ble against a transition toward a space independent order
parameter. The domain a0(µ̄, T ) > 0 corresponds to the
region of the (µ̄, T ) phase diagram above this line, and it
is the domain where we will look for other transitions. In
practice we can see a0(µ̄, T ) as a measure of the distance
from the spinodal line in the (µ̄, T ) plane. Explicitely if we
define Tsp(µ̄/T ) the spinodal temperature as a function of
the ratio µ̄/T , we have a0(µ̄, T ) = ln[T/Tsp(µ̄/T )]. We will
not need to explicit further this distance. As indicated in
the introduction we have by definition a2(µ̄/T ) = 0 at
the TCP and it is small in the vicinity of this point. For
(µ̄/T ) > (µ̄/T )tcp = 1.91, we have a2 > 0 and a2 < 0 for
(µ̄/T ) < (µ̄/T )tcp. Finally a4(µ̄/T ) = 0.114 at the TCP
(while it is negative near µ̄ = 0 and goes to −0.25 when
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T → 0). With these notations the gap equation in the
vicinity of the TCP reads:

∆q

[
a0 − 1

3
a2Q

2 +
1
5
a4Q

4

]
−
∑
qi

∆q1∆
∗
q2

∆q3

×
[
1
2
a2− 1

6
a4

(
Q2+2Q2

1+2Q2
3−Q·(Q1+Q3)+3Q1 ·Q3

)]

+
3
8
a4

∑
qi

∆q1∆
∗
q2

∆q3∆
∗
q4

∆q5 = 0 (6)

where we have used the dimensionless wavevector Q =
qvF /2µ̄ and expressed ∆q in units of µ̄. Also the momen-
tum conservation is assumed in the summations, that is
q1+q3 = q+q2 in the third order term and q1+q3+q5 =
q + q2 + q4 in the fifth order one. The above expression
can be checked against the case of the simple Fulde-Ferrell
state ∆(r) = exp(iq0 ·r) where a single wavevector enters.

Now the above gap equation is obtained by minimizing
the following free energy difference Ω between the super-
fluid and the normal state:

Ω=
∑
q

|∆q|2
[
a0− 1

3
a2Q

2+
1
5
a4Q

4

]
− 1

2

∑
qi

∆q1∆
∗
q2

∆q3∆
∗
q4

×
[

1
2
a2 − 1

6
a4(Q2

1 + Q2
2 + Q2

3 + Q2
4 + Q1 ·Q3

+ Q2 ·Q4)

]
+

1
8
a4

∑
qi

∆q1∆
∗
q2

∆q3∆
∗
q4

∆q5∆
∗
q6

(7)

where we have the momentum conservation q1+q3 = q2+
q4 in the fourth order term while q1+q3+q5 = q2+q4+q6

holds in the sixth order one. We have used symmetry and
momentum conservation to present the fourth order term
in a symmetrical way. This expression equation (7) is just
the free energy we were looking for. It coincides exactly
with the result of reference [16] once the differences in
notations are taken into account. We have considered here
the 3-D case. For a two-dimensional system the angular
averages found in the calculation are different. The result
is simply obtained from the above one by multiplying the
Q2 terms by 3/2 and the Q4 terms by 15/8.

3 Simple cases

Let us first consider some simple situations. If we con-
sider an homogeneous order parameter, that is q = 0, we
have merely Ω = a0∆

2 − a2∆
4/4+ a4∆

6/8. If we want to
have this free energy negative for a0 > 0 we need to have
a2 > 0, that is to be at temperature below the TCP. In
this case Ω > 0 when a0 > a2

2/8a4 and we reach a first
order transition for a0 = a2

2/8a4, with a non zero order pa-
rameter ∆2 = a2/a4. This is the standard first order Pauli
limiting transition. We consider next the possibility of a
second order transition. In this case only the second order
term in equation (7) is relevant. The location of this tran-
sition is given by a0 = 1

3a2Q
2 − 1

5a4Q
4. Below the TCP,

where a2 > 0, we can find a0 > 0 for non zero wavevec-
tor Q, that is we will find an FFLO phase. Precisely the
optimal wavevector is Q2

0 = 5
6a2/a4 and the correspond-

ing maximal a0 is a0 = 5
36a2

2/a4. We see that this value is
larger than the one we just found for the standard Pauli
limiting transition. Thus as expected the FFLO transi-
tion happens first and overtakes the first order transition.
Finally it is natural and interesting to try to generalize
the two above situations and consider the possibility of a
first order transition for an order parameter with a single
wavector component ∆q. With the shorthand ∆q ≡ ∆ the
free energy writes:

Ω=
[
a0− 1

3
a2Q

2+
1
5
a4Q

4

]
∆2− 1

4
[
a2−2a4Q

2
]
∆4+

1
8
a4∆

6.

(8)

Minimizing first with respect to Q2 we obtain for the ex-
tremum the condition Q2 = 5

6a2/a4 − 5
4∆2, which implies

that must have ∆2 ≤ 2
3a2/a4 otherwise we are back to the

homogeneous situation and the Pauli limiting transition.
Inserting this value for Q2 in equation (8) we find Ω =[
a0 − 5

36a2
2/a4

]
∆2 + 1

6a2∆
4 − 3

16a4∆
6. We are naturally

interested in finding a transition higher than the standard
FFLO. This means we are looking for a0 > 5

36a2
2/a4, so

the first term in Ω is positive. But one sees that the sum
of the last two terms is also positive for ∆2 ≤ 2

3a2/a4.
Therefore we have not been able to improve the standard
FFLO solution. However we have clearly not done our best
in this direction.

Before trying to improve in this way, it is convenient
to simplify our expression for the free energy by taking
reduced units for the order parameter and the wavector,
which come out naturally from our above discussion. We
set ∆ = (a2/a4)1/2∆̄, Q = (a2/a4)1/2q̄, a0 = A0a

2
2/a4

and Ω = (a3
2/a2

4)F . This leads to rewrite equation (7) for
the free energy as:

F =
∑
q

|∆̄q|2
[
A0 − 1

3
q̄2 +

1
5
q̄4

]
−
∑
qi

∆̄q1∆̄
∗
q2

∆̄q3∆̄
∗
q4

×
[
1
4
− 1

12
(q̄2

1 + q̄2
2 + q̄2

3 + q̄2
4 + q̄1 · q̄3 + q̄2 · q̄4)

]

+
1
8

∑
qi

∆̄q1∆̄
∗
q2

∆̄q3∆̄
∗
q4

∆̄q5∆̄
∗
q6

. (9)

It is clear from this rescaling transformation and the re-
sulting expression that, in the vicinity of the TCP (where
a2 is small), it is unnecessary to go beyond our sixth order
expansion in ∆ and q. It is also of interest to rewrite this
free energy as a functional of ∆(r) by Fourier transform.
This gives, after by parts integrations:

F =
∫

dr
[
A0|∆̄|2 − 1

3
|∇∆̄|2 +

1
5
|∇2∆̄|2

]

−
∫

dr

[
1
4
|∆̄|4 − 1

24

[
2
(∇|∆̄|2)2

+3
(∇∆̄2

) (∇∆̄∗2) ]]+
1
8

∫
dr|∆̄|6. (10)
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4 The LO subspace

As emphasized by LO all the states corresponding to the
same wavector q̄0 but with different orientation for q̄0 are
degenerate right on the FFLO transition line. This degen-
eracy is lifted, at least partially, when one goes into the
superfluid phase because of the coupling between the var-
ious plane waves produced by the nonlinear terms in the
free energy. When one investigates the states selected in
this process, one has to consider the subspace:

∆̄(r) =
∑

∆q0 exp(iq̄0 · r) (11)

of all the order parameters generated by these plane waves.
We call this the LO subspace. In this section we will re-
strict to this subspace our search for the state appearing
at the transition: we will look for the minimum of the free
energy within this LO subspace. Actually LO looked for a
lattice as a solution and restricted themselves to this kind
of order parameter. However there is physically no basic
reason to enforce this type of restriction. One could look
for incommensurate structures or quasicrystal-like solu-
tions. Even if these are not the lowest energy solution, they
might be of interest as local solutions corresponding phys-
ically to defects. Therefore we have not set a periodicity
condition on the solutions we have considered. Neverthe-
less let us indicate at once that the energetically favored
solutions we have found within the LO subspace are actu-
ally periodic. Although considering only the LO subspace
is an important restriction, it does not make the problem
easy at all, although we solve it completely below.

Let us first show that, within this subspace, the stan-
dard FFLO transition line is not stable, and the transition
is actually first order. With our reduced units the LO sub-
space corresponds to q̄2

0 = 5
6 . This minimizes the coeffi-

cient of the second order term in equation (9). The FFLO
transition line is then given by A0 = 5

36 , which makes the
second order term zero within the LO subspace. Let us
then look at the fourth order term in equation (9). This
amounts to calculate the functional derivative of the free
energy on the FFLO transition line. In a standard sec-
ond order phase transition it should always be positive,
forcing the order parameter to be zero on the transition
line. However in the present case it is not obvious that
this is systematically so because of the interplay of the
wavevectors in this term. Specifically we introduce a pa-
rameter β which describes this effect for any fixed order
parameter ∆(r). It is defined by:

2βq̄2
0

∑
qi

∆̄q1∆̄
∗
q2

∆̄q3∆̄
∗
q4

=

q̄2
0

∑
qi

(q̂1 · q̂3 + q̂2 · q̂4)∆̄q1∆̄
∗
q2

∆̄q3∆̄
∗
q4

=

−
∫

∆̄2(∇∆̄∗)2 + c.c. (12)

For the simple case of the FF solution we have merely
β = 1. However this is the highest possible value and we
can think of decreasing it, or even making it negative, by

a proper choice of the order parameter in the LO space,
although naturally β ≥ −1. Then the fourth order term in
equation (9) is given by

[
1
6 (β + 2)q̄2

0 − 1
4

] ∫ |∆̄|4 and has
thus the same sign as 5β + 1 when we take q̄2

0 = 5
6 . Hence

for any order parameter with β ≤ − 1
5 the fourth order

term is negative. We will find actually many such states.
Now when we are on the FFLO transition line (the second
order term is zero) and the fourth order term is negative,
we decrease the free energy and make it negative just by
taking the order parameter to be small and nonzero, which
shows that the standard FFLO transition line is unstable.
Naturally the larger the order parameter, the lower the
free energy, but we have to stay in the range where the
second and fourth order terms are the only ones important
in our expansion, which means that the sixth order term
is negligible. Then since we have a negative free energy, we
can raise it back to zero by increasing A0 beyond its value
5
36 on the FFLO line, which means we go beyond this line
in the (µ̄, T ) phase diagram. In this way the second or-
der term becomes positive. Eventually we will be limited
by the growth of the sixth order term. The transition we
have found corresponds to positive second and sixth order
terms and a negative fourth order one. The free energy
becomes negative for a nonzero value of the order param-
eter. We have thus found a first order transition beyond
the standard FFLO transition line. This discussion about
the order of the transition is the exact analogue of the one
we made in the introduction for the T = 0 situation.

Naturally it is of interest to minimize β since it is
rather natural to expect that the states corresponding to
the minimum will lead to the stronger instability toward
the first order transition. We show now that β ≥ − 1

3 ,
the equality β = − 1

3 being obtained for any real order
parameter. We make use of:∫ [

∆̄2(∇∆̄∗)2−|∆̄|2|∇∆̄|2]+c.c.=
∫ [

∆̄∇∆̄∗−c.c.
]2≤0

(13)

where the equality occurs only for a real order parameter
(within an irrelevant overall constant phase factor), and:

∫ [
∆̄2(∇∆̄∗)2 + 2|∆̄|2|∇∆̄|2]+ c.c. =

−
∫

|∆̄|2(∆̄∇2∆̄∗ + c.c.) = 2q̄2
0

∫
|∆̄|4 (14)

where the last step makes specific use of the form equa-
tion (11) for the order parameter. We have then:

− 2βq̄2
0

∫
|∆̄|4 =

∫
∆̄2(∇∆̄∗)2 + c.c. ≤

∫ [
∆̄2(∇∆̄∗)2

− 2
3
[
∆̄2(∇∆̄∗)2 − |∆̄|2|∇∆̄|2] ]+ c.c. =

1
3

∫
[∆̄2(∇∆̄∗)2 + 2|∆̄|2|∇∆̄|2] + c.c. =

2
3
q̄2
0

∫
|∆̄|4 (15)

hence β ≥ − 1
3 .
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Together with β it is also intuitively convenient to con-
sider γ defined by:

γ

∫
dr|∆̄|4 = q̄−2

0

∫
dr
[∇|∆̄|2]2 =∑

qi

(q̂1 − q̂2)2∆̄q1∆̄
∗
q2

∆̄q3∆̄
∗
q4

(16)

which is easily seen to satisfy γ = 1−β from equation (14).
We are thus interested in maximizing γ. From the first ex-
pression in equation (16) it is intuitively clear that γ will
be large when the (properly normalized) order parame-
ter has strong spatial variations. In particular it will be
better for |∆̄(r)|2 to have many nodes. This is more eas-
ily achieved if ∆̄(r) has no imaginary part since in this
case one has only to require that the real part is zero.
This makes intuitively reasonable that γ is maximized by
a real order parameter. One can also come to this conclu-
sion from the Fourier expansion in equation (16) (or also
from Eq. (12)): it is of interest to have as often as possible
opposite wavevectors so that (q̂1 − q̂2)2 takes as much as
possible its maximum value, namely 4. One is thus natu-
rally led to an order parameter which is a combination of
cos(q0 ·r+ϕq0) with real coefficients, the directions of the
q0 ’s being free. This corresponds merely to require that
∆̄(r) is real in equation (11) by taking ∆−q0 = ∆∗

q0
. On

the other hand, since any real order parameter gives the
maximum γ, it is not necessary that these cosines have
equal weight.

We can now come back to our free energy equation (9)
and find the best solution within the LO subspace, since
we have found that the minimum β is −1/3, as soon as
the order parameter is real, which implies ∆−q0 = ∆∗

q0
in

equation (11). We introduce a measure ∆̄ of the amplitude
of the order parameter by setting:∫

dr|∆̄|2 =
∑
qi

∆̄q1∆̄
∗
q2

= N2∆̄
2 (17)

where by definition N2 ≡ N is the number of plane waves
coming in equation (11). If all the planed waves have same
amplitude, ∆̄ is just the common value of these ampli-
tudes. Then we define N4 and N6 by:∫

|∆̄|4 =
∑
qi

∆̄q1∆̄
∗
q2

∆̄q3∆̄
∗
q4

= N4∆̄
4 (18)

and:∫
|∆̄|6 =

∑
qi

∆̄q1∆̄
∗
q2

∆̄q3∆̄
∗
q4

∆̄q5∆̄
∗
q6

= N6∆̄
6. (19)

In these definitions we have used the same implicit conven-
tion of momentum conservation as in equation (6), that
is q1 = q2 in equation (17), q1 + q3 = q2 + q4 in equa-
tion (18) and q1 +q3 +q5 = q2 +q4 +q6 in equation (19).
For the simple plane wave considered in equation (8), we
had N2 = N4 = N6 = 1. For the real order parameter
we are interested in, the set of wavevectors {qi} is made

of N/2 pairs. If all the planed waves have same ampli-
tude, one finds [20] for example by simple counting that
N4 = 3N(N − 1) and N6 = 5N(3N2 − 9N + 8). Actually,
once it is recognized that, from the counting procedure,
N4 and N6 are polynomials in N of order 2 and 3 respec-
tively, the coefficient may easily be found by considering
the cases N = 2, 4, 6. With these notations the free energy
equation (9) reduces to:

F =N2∆̄
2

[
A0− 1

3
q̄2+

1
5
q̄4

]
−N4∆̄

4

[
1
4
−α

2
q̄2

]
+

1
8
N6∆̄

6

(20)

where we have set α = β+2
3 (for the simple plane wave

considered in equation (8), we had α = 1).
We proceed now as we have done for equation (8).

Minimizing F with respect to q̄2 we find for the extremum
the condition q̄2 = 5

6 − 5
4α(N4/N2)∆̄2, which implies that,

in our considerations, we have for ∆̄2 an upper bound
∆̄2

max = (2/3α)N2/N4. This leads, for the value of the
free energy F at this extremum, to:

F

∆̄2
= N2

(
A0 − 5

36

)
+ N4∆̄

2

(
5α

12
− 1

4

)

+ ∆̄4

(
N6

8
− 5α2

16
N2

4

N2

)
· (21)

Now the standard FFLO solution corresponds to A0 = 5
36 .

Since we are interested in a better solution we want
A0 > 5

36 which makes the first term of F/∆̄2 positive. On
the other hand, for ∆̄ = ∆̄max, the sum of the last two
terms in the right hand side (r.h.s.) of equation (21) can
be written as ∆̄2

max(N4/24α)[5(α− 3
5 )2 +2N2N6/N

2
4 − 9

5 ].
This is always positive since we have N2N6/N

2
4 ≥ 1 ( this

results directly from
∫

dr|∆̄|2 · ∫ dr|∆̄|6 ≥ [
∫

dr|∆̄|4]2).
If we assume that the second term in the r.h.s. of equa-
tion (21) is positive, this implies that the free energy is
always positive. Therefore if we want to find non positive
values for F it is necessary to have a negative coefficient
for the second term in the r.h.s. of equation (21), which
means α < 3

5 . This is possible since the minimum β = − 1
3

we have found above corresponds to a minimum α = 5
9 .

Then the quadratic form equation (21) can be zero
if we meet the condition 4(A0 − 5

36 )(2N2N6
N2

4
− 5α2) ≤

(5α
3 − 1)2. This leads to the following result for the tran-

sition line to the FFLO phase:

A0 =
5
36

+
1
8

(
1 − 5α

3

)2
N2N6

N2
4

− 5
2α2

· (22)

In the (µ̄− T ) plane this line is higher than the standard
second order FFLO transition line, which is given by A0 =
5
36 . On the other hand the value of ∆̄m which gives F = 0
at the threshold given by equation (21) is:

∆̄2
m =

N2

N4

1 − 5α
3

N2N6
N2

4
− 5

2α2
(23)
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which is clearly nonzero and our transition is quite ex-
plicitely a first order transition (note that the condition
∆̄m < ∆̄max is necessarily satisfied since F is zero for ∆̄m

and positive for ∆̄max ).
Coming back to the location of the transition line equa-

tion (23) we consider now how to optimize it. First we see
from the numerator that it is advantageous to lower α
as much as possible. Indeed our minimum α = 5

9 is quite
close to the limiting value α = 3

5 so the variation of the de-
nominator with α is irrelevant. Hence we are lead to make
the fourth order term in the free energy equation (9) as
negative as possible by minimizing β, as we anticipated at
the beginning of Section 4. Once we have taken α = 5

9 , we
see that it is of interest to take N2N6/N

2
4 as small as pos-

sible (we have seen that it is bounded from below by 1).
From their definitions equations (18, 19) we can evaluate
N4 and N6 for a general order parameter equation (11)
∆̄(r) =

∑
∆qi exp(iqi · r) = 2

∑ |∆qi | cos(qi · r + ϕqi).
One finds:

N4∆̄
4 = 3

(∑
i

|∆qi |2
)2

− 3
∑

i

|∆qi |4 (24)

and:

N6∆̄
6 = 15

(∑
i

|∆qi |2
)3

− 45

(∑
i

|∆qi |2
)2∑

i

|∆qi |4

+ 40
∑

i

|∆qi |6. (25)

Actually one can recognize that, for symmetry reasons,
the results involve only

∑
i |∆qi |n with n = 2, 4, 6, be-

cause odd powers of cosines average to zero. Hence the
results assume necessarily the general form given by equa-
tions (24, 25). Then the coefficients are easily obtained
from the specific case where all the amplitudes |∆qi | are
equal.

Since the wavevectors are paired it is now more con-
venient to sum over pairs from now on. Defining ai =
|∆qi |2/

∑
i |∆qi |2 (implying

∑
i ai = 1) we have:

9
10

N2N6/N
2
4 =

6 − 9S2 + 4S3

(2 − S2)2
(26)

where S2 =
∑

i a2
i and S3 =

∑
i a3

i . When we have
a single pair S2 = S3 = 1 and the r.h.s. of equa-
tion (26) is equal to 1. We show now that it is other-
wise larger than 1. Since (2 − S2)2 < 4 − 3S2 because
S2 < 1 when we have more than a single pair, it is
enough to prove that 3(1 − S2) ≥ 2(1 − S3). This is in
turn verified because we can write for the left-hand side
1−S2 = (

∑
i ai)2−

∑
i a2

i = 2
∑

i<j aiaj . In a similar way
we have in the right-hand side 1−S3 = (

∑
i ai)3−

∑
i a3

i =
3
∑

i<j aiaj(ai + aj) + 6
∑

i<j<k aiajak = 3
∑

i<j aiaj −
9
∑

i<j<k aiajak. So our statement is correct since it is
just equivalent to

∑
i<j<k aiajak ≥ 0 (the equality holds

when we have only two pairs since one can not have three
different indices). Therefore we come to the conclusion

that N2N6/N
2
4 is minimized when we take a single pair

of plane waves with wavevectors (q,−q), corresponding
to a simple order parameter proportional to cos(q · r),
which has hence a planar symmetry. It is unfavourable
to increase the number of plane waves. This is more eas-
ily seen in the particular situation where these N plane
waves have the same amplitude. In this case we merely
have N2N6/N

2
4 = [15N2 − 45N + 40]/9(N − 1)2 which

increases regularly with increasing N , and is minimum for
N = 2. In this last case N2N6/N

2
4 = 10

9 . It is interesting to
remark that this conclusion is opposite to what one would
obtain by considering the fourth order term alone in equa-
tion (9) and omitting the sixth order one. Since the fourth
order term grows (compared to the second order one) with
the number N plane waves, one would conclude that it is
better to increase this number. The opposite turns out to
be true because the sixth order term grows even faster
with the number of plane waves. This shows quite clearly
that, in contrast with what one might hope, the consider-
ation of the fourth order term is not enough to conclude
about the actual ground state of system.

We find then explicitely A0 = 5
36 + 2.02 × 10−3.

We note that this is quite close to the standard FFLO
transition itself. For comparison the standard Clogston-
Chandrasekhar [21,22] first order transition is given, as we
have seen, by A0 = 1

8 so the difference with the standard
FFLO transition is −1.39×10−2 which is also rather small.
Since we know that the standard Clogston-Chandrasekhar
transition and standard FFLO transition stay close be-
yond the vicinity of the TCP and that this proximity be-
tween these two lines extends down to zero temperature,
it seems quite possible that the same is true for our first
order transition line. This is indeed what has been found
numerically by Matsuo et al. [14]. Hence it is very tempt-
ing to conclude from this proximity between first and sec-
ond order lines that the first order transition is only very
weakly first order. Naturally this point is very important
experimentally since it would be quite difficult to distin-
guish between a second order transition and a very weak
first order one.

On the other hand we know from the work of
Burkhardt and Rainer [15] that the transition is second
order in a 2D situation. So it is of some interest to con-
sider formally an arbitrary dimension to see how one goes
from the 2D to the 3D situation. For the case of our pla-
nar order parameter, there is no difficulty in working with
an arbitrary dimension D. As we have mentionned at the
end of Section 2, one has just to modify some coefficients
in equation (7): here one has to multiply the Q2 terms
by 3/D and the Q4 terms by 15/D(D + 2). Reproducing
then the above analysis, we obtain that the FFLO tran-
sition occurs for A0 = D+2

12D with a wavevector q̄2 = D+2
6 .

One finds again that, in order to obtain a phase transition
higher than FFLO, the coefficient of the second term in
the r.h.s. of equation (21) has to be negative. But this coef-
ficient is now in general N4(

α(D+2)
D −1)/4 with explicitely

α = 5
9 . So we find Dc = 2.5 as the critical dimension to

have a first order transition. The result equation (21) for
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the location of the transition for this planar state becomes:

A0 =
D + 2
12D

+
(2D − 5)2

15D(7D − 10)
(27)

with the value of ∆̄m of ∆̄ at the threshold given by:

∆̄2
m =

4
5

2D − 5
7D − 10

· (28)

Since we have found a critical dimension Dc = 2.5 which is
halfway between the physical situations D = 2 and D = 3,
from this point of view, the first order transition we have
found is not ‘very near to be second order’, in contrast
to what we suggested above. Naturally the best way to
conclude on this point is to look at the value of the or-
der parameter at the first order transition equation (28)
which is ∆̄m ' 0.27. Although this is clearly smaller than
the corresponding value ∆̄m = 1 for the uniform BCS
state, the order of magnitude is similar so the first order
transition is not very weak in this respect. This seems in
agreement with results given in reference [14] where the
jump of the order parameter is also sizeable.

In two dimensions we can again make use of equa-
tion (20) to compare all the possible states. As we have
seen the transition is second order and we can neglect the
sixth order term as in the original LO analysis. The fourth
order term is positive and, roughly speaking, below the
transition the state with smaller fourth order term is se-
lected. This leads to take N4/N

2
2 = 3(2−S2)/2 as small as

possible. So we find again that the single pair state N = 2
is selected, which corresponds to the state investigated by
Burkhardt and Rainer [15].

In closing this section, let us note that we have have
found a non- degenerate minimum for the free energy,
namely the planar state cos(q · r) corresponding to two
plane waves with opposite wavevectors and equal ampli-
tude in equation (11). However by adding to this order
parameter another cosine with a small amplitude, namely
ε cos(q1 · r), we can have a free energy arbitrarily close to
the planar state free energy. Conversely the location for
the transition can be made arbitrarily close to the planar
state transition. These states are highly degenerate since
the relative directions of q and q1 do not matter. These
are some kind of excited states for our system with ar-
bitrarily small energy and it is possible to speculate that
they play a role in the physics of our system.

5 Beyond the LO subspace

In the preceding section we have restricted to the LO sub-
space our search for the state with lowest free energy at
the transition and therefore with highest critical tempera-
ture. While this restriction is justified when the free energy
expansion is limited to the fourth order term (this term
being treated as a perturbation), it is no longer valid when
the sixth order term is included. And indeed the actual
minimum state does not belong to the LO subspace, since
it can be checked that equation (11) can not satisfy the
Euler-Lagrange equation corresponding to equation (10)

because of the non linear terms. However we have found
in the preceding section a non degenerate minimum corre-
sponding to the planar state. The selection of the wavevec-
tors of this state was due to the fourth order term while
the number of components was controlled by the sixth
order one, which is otherwise quite structureless. If the
nonlinearities produce only a rather small change on the
solution, it is reasonable to look for the actual solution as
being ‘near’ the solution cos(q · r) we have found in Sec-
tion 4. In particular it is reasonable to look for an order
parameter with a one-dimensional dependence on r and
we will also assume it to be real. And indeed we will find
a solution which is quite near cos(q · r). Although this
argumentation is only a self-consistent one (we can not
exclude that a strong nonlinear modification of a three-
dimensional solution produces the actual minimum), we
note that the numerical exploration of Houzet et al. [13]
has indeed produced a real one-dimensional order param-
eter for the minimum. We remark also that there is an an-
alytical solution [23] in the case of one-dimensional space
for this one-dimensional order parameter.

With a one-dimensional real order parameter the re-
duced free energy simplifies into:

F =
∫

dx

[
A0∆̄

2 − 1
3
∆̄

′2 +
1
5
∆̄

′′2
]

−
∫

dx

[
1
4
∆̄4 − 5

6
∆̄2∆̄

′2
]

+
1
8

∫
dx ∆̄6 (29)

where ∆̄′ and ∆̄′′ are first and second derivative of ∆̄ with
respect to x. Although we deal with a nonlinear prob-
lem we can still minimize with respect to the amplitude
of the order parameter, just as we have done at the end
of the preceding section (this works actually also for a
three-dimensional order parameter). We set ∆̄(x) = aδ(x),
where δ(x) is a normalized spatial function (for example
by
∫

δ2 = 1 ). δ(x) gives the shape of the order parameter
while a corresponds to its amplitude. When we substi-
tute in equation (29) we obtain for F/a2 a quadratic form
in a2. Writing again that, for a specific function δ(x), this
form has double root at the transition leads us to an ex-
pression for A0 which does not depend anymore on the
normalization of δ:

A0 =
[
∫

δ4 − 10
3 (δδ′)2]2

8
∫

δ2
∫

δ6
+

∫
1
3δ

′2 − 1
5δ

′′2∫
δ2

(30)

and we want now to maximize A0. Similarly the condition
that the free energy is zero at the transition imply:∫

∆̄6 =
∫

∆̄4 − 10
3

∆̄2∆̄
′2 (31)

or equivalently:

A0

∫
∆̄2 =

∫
1
8
∆̄6 +

1
3
∆̄

′2 − 1
5
∆̄

′′2 (32)

which gives the amplitude of the order parameter.
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The condition that A0 is maximum can be obtained
from equation (30) but it is easier to deduce it from equa-
tion (29). One finds the ordinary nonlinear differential
equation:

1
5
∆̄′′′′+

(
1
3
− 5

6
∆̄2

)
∆̄′′− 5

6
∆̄∆̄

′2+
3
8
∆̄5− 1

2
∆̄3+A0∆̄=0

(33)

(analytically this equation can be integrated once and
then reduced to a second order nonlinear differential
equation but this is of no real help for numerics). One
checks readily that the cosine form of the order parameter
∆̄(x) = a cos(q̄x) is not a solution. It satisfies only the lin-
ear part of the equation, which leads to A0 = q̄2/3− q̄4/5.
Looking for the maximum of A0 gives the FFLO result
A0 = 5/36 ' 0.1389 with q̄2

FFLO = 5/6. This FFLO so-
lution corresponds to keep only the second term in the
r.h.s. of equation (30). This term produces for A0 a kind
of (inverted) effective potential q̄2/3 − q̄4/5 which has a
strong maximum for the FFLO solution. When we write
a Fourier expansion of the solution this potential selects
quite effectively the wavevectors in the close vicinity of
the FFLO result q̄FFLO.

Indeed the numerical exploration of equation (33) for
A0 very close to the maximum gives for the solutions
one or two basis frequencies q0 and q1 which are close
to q̄FFLO. The other frequencies appearing in a Fourier
analysis are simply odd combinations of q0 and q1 like
2q0 ± q1, 2q1 ± q0, 3q0, 4q1 ± q0, etc. The weights of these
frequencies depend on their order, i.e. the higher the fre-
quency, the smaller the weight. This shows explicitely the
strength of the effective FFLO potential in A0 (the sec-
ond term in the r.h.s. of Eq. (30)). We have investigated
analytically the efficiency of a small frequency splitting
by writing q1 = q0 + ε with ε → 0 (but ε 6= 0 because
this limit is singular). However a single frequency q1 = q0

turned out to be always better. We are finally lead to the
conclusion that going beyond the LO subspace produces
only small corrections due to nonlinearities. These cor-
rections correspond to odd harmonics of the fundamental
frequency q̄ and they are small because of the efficiency
of the effective FFLO potential. Actually if we assume
from the start that the corrections to δ0(x) = cos(q̄x) are
small, we can write δ(x) = δ0(x)+δ1(x), with δ1(x) small,
and perform a first order expansion of equation (30). One
finds readily that it is most favorable to take δ1(x) pro-
portional to cos3(q̄x) (another contribution from cos5(q̄x)
is quite small), but one has to go to second order to find
the amplitude. Actually, once it is proved that this har-
monic expansion is the correct answer, it is much easier
to minimize equation (30) numerically which avoids cum-
bersome calculations. Specifically we considered the trial
function δ(x) = cos(q̄x)+a3 cos(3q̄x+φ1)+a5 cos(5q̄+φ2)
and numerically maximized A0 (some more complete trial
functions that we also tried eventually reduced to this
form when maximized). We found a3 = −1.33 × 10−2,
a5 = 1.62 × 10−4, q̄ = 0.793, φ1,2 = 0 and A0 = 0.141604
(which is in full agreement with reference [13]). This form
is very close to the cosine solution and the improvement

in A0 compared to our result equation (22) for the co-
sine solution A0 = 31/220 ' 0.14091 is pretty small in
absolute values, although it gives a significant increase of
7×10−4 to our gain of 2.02×10−3 compared to the FFLO
result. Our result q̄ = 0.793 has to be compared to our re-
sult in LO subspace from equation (23) q̄ = 0.829 and to
q̄FFLO = 0.913.

Let us finally indicate that, in contrast to the weak
nonlinearities we have just found at the transition, one
finds that higher order harmonics become increasingly im-
portant when one goes deeper into the superfluid, which
corresponds to decrease A0. This makes this regime be-
yond the scope of our study. Actually it has been found
quite interestingly that, in 2D [15] and in 3D [13], one
goes progressively to a lattice of solitons, which leads to
a second order phase transition to the uniform BCS state
deep in the superfluid phase.

6 Conclusion

In this paper we have explored analytically the nature of
the transition to the FFLO superfluid phases in the vicin-
ity of the tricritical point, where these phases begin to ap-
pear. This region is convenient for the analytical study we
make because, in the vicinity of this point, one can make
use of an expansion of the free energy up to sixth order,
both in order parameter amplitude and in wavevector. De-
spite this simplification one has still a complex nonlinear
problem to solve. We have first explored the minimization
of this free energy within the LO subspace, made of ar-
bitrary superpositions of plane waves. We have seen that
the standard second order FFLO phase transition is un-
stable and that a first order transition occurs at higher
temperature. Within this subspace we have shown that it
is favorable to have a real order parameter. Then among
these states we have shown that those with the smallest
number of plane waves are preferred. This leads to re-
tain only two plane waves, corresponding to an order pa-
rameter with a cos(q0 · r) dependence, in agreement with
preceding work [13]. Finally we have shown that, when re-
leasing the constraint of working within the LO subspace,
the order parameter at the transition is only very slightly
modified by higher harmonics contributions and we have
been able to ascribe this result to the strong selection
of the wavevector caused by the second order terms of
the free energy, corresponding physically to the standard
FFLO transition.

We are very grateful to X. Leyronas for stimulating discussions
and to K. Nagai for making us aware of his work, during a
meeting very nicely organized by G. Eska and H. Brandt for
D. Rainer’s 60th anniversary.
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